A MULTI-GPU PARALLEL GENETIC ALGORITHM FOR
LARGE-SCALE VEHICLE ROUTING PROBLEMS

Marwan Abdelattil, Manbir S. Sodhil, and Resit Sendag?

1Department of Industrial And Systems Engineering.
2Department of Electrical And Computer Engineering.

University of Rhode Island
mabdelrazik@uri.edu, sodhi@uri.edu, sendag@uri.edu

INTRODUCTION

* The Vehicle Routing Problem (VRP) is fundamental to logistics planning.

* |t seeks the optimal set of routes for a fleet of trucks to serve a given set of
customers subject to some constraints.

 There are many forms of VRP for example: Dynamic VRP (DVRP), VRP with
Time Windows VRPTW, and Capacitated VRP (CVRP).

e CVRP is the most studied form of VRP where:

1. Total customer demands cannot exceed the truck capacity.

2. Customers must be visited only once.

MOTIVATION

GAs are one of the methods commonly used to solve VRP. n >

8(0(6 11408 9|12(5(0|7(3[0|1]|2]|10|0 |114

e-codon Chromosome

I‘ Special property: they operate on a population of potential solutions:

Improves algorithm efficiency, and the probability of finding a good solution.

l’ Get stuck in local minima, longer time to converge with large problems

4

High Computational Cost!

HARDWARE

The algorithm runs entirely on a DGX-1 server:

e 8 GPUs (NVIDIA Tesla v100): each has 32 GB shared %: ii:
memory and 5,120 CUDA cores. = -

Hybrid cube-mesh topology through NVLink.

Benefits of using NVLink and P2P:

 Direct data flow between the GPUs.

* Relieves the pressure on PCle bus, the CPUs, and the
ostemmemory. o wTRel T RETT R

 Higher bandwidth and lower latency than PCle links.

Indirect communications might cause delays!!

RESULTS & DISCUSSION (SETTINGS)

* The execution speed in secs/generation is reported on selected benchmark problems of size
between 420 and 20,000 nodes.

 GA parameters are taken from a previous design of experiment (DOE):

e Population size: 20 X the number of nodes n,

* Inverse mutation at a 0.3 probability,

e 1-point crossover at a 0.6 probability,

* Migration rate of 1/GPU_count of it each GPU population,

* Migration interval of 1,000 generations, and

* The demes are not synchronized at the migration time to avoid further delays

* 4 GPU arrangements were considered (1, 2, 4 & 8) as well as one parallel CPU algorithm.
Each arrangement run each problem 5 times for 5,000 generations.

RESULTS & DISCUSSION

stance | Nede [cpy | CPUarmangement
X-n420-

K130.vrp? 420 | 360 | 0.78 0.5 0.46 0.4
Li_30.vrp® 1,040 | 1,800 18.67 | 9.03 4.71 1.05
Li_31.vrp® 1,120 | X° 12.18 | 6.11 3.18 1.22
Li_32.vrpP 1,200 | X° 9.92 4.89 2.67 1.80
33.vrp® 2401 | X° | 8028 | 29.17 | 1225 | 6.71
34.vrp® 3,601 | X | 253.94 | 14551 | 54.62 | 21.47
35.vrp® 6,001 | X° | 1,067.1| 1,062.6| 397.89 | 163.68
Ghentl.vrp 10,000 | X~ X" X" X 1103.8
Flandersl.vrp | 20,000 | X" X X" X" 2318.9

* The prbblem is too bi{g for this arrangement

The algorithm was run for 100,000 generations on the 420-node problem and got a solution gap of
4.98% from the best-known solution in the literature.

RESULTS & DISCUSSION (PROFILING)

* Profiling was performed on a problem 6,001 nodes:

Running [/home/mm™mmm/nsight-systems-2022.1,1/target-linux-x64/reports/cudaapisum.py Downloads/prof Ky 35 8gpus.sqlite]...
Total Time (ns) Num Calls Min (ns) Max (ns) StdDev (ns)

333,792,031,463,153 134,714 2,477,782,795.1 39,745,047,666 6,771,501,868. cuStreamSynchronize
1,341,112,616,325 11,251,823 119,190.7 20,027.0 16,088 423,340,776 2,373,310. cudaMemcpy
857,874,468,117 229 3,746,176,716.7 352,112.0 195,902 31,071,026,971 8,689,844,668. cuModulelLoadDataEx
515,423,467,827 11,948,576 43,136.8 9,324.0 3,853 23,690,688,585 8,399,554, cuLaunchKernel
374,808,831,188 47 7,974,655,982.7 4,384,067,599.0 43,899,688 29,207,972,911 8,047,133,084. cudaMemcpyPeer

CUDA API

Running [/home/ e I/nsight-systems-2022.1.1/target-linux-x64/reports/gpukernsum.py Downloads/prof Ky 35 8gpus.sqlite]...
Total Time (ns) Instances) Med (ns) Min (ns) Max (ns) StdDev (ns)

141,295,611,300,048 - 29,375,386,964. 29,351,465,547.5 5,730,032,465 39,734,140,897 2,126,856,633. cudapy::kernels::find duplicates..

95,280,965,906,390 , 19,829,545,454. 19,740,856,891.0 15,306,774,983 29,655,096,678 2,017,849,756. cudapy: :kernels: :twoOpt$2473(Arr..
47,767,864,922,369 4, 9,945,422,636. 8,856,488,169.0 2,793,094,917 16,298,794,407 3,573,339,843. cudapy: : kernels: :addMissingNodes..
43,086,587,684,137 ! 8,959,573,234. 8,932,402,511.0 8,377,041,422 23,896,849,953 438,697,471. cudapy: :kernels::shift r flags$24..
5,356,944,563,293 , 1,113,941,477. 1,109,480,248.0 991,568,120 1,285,318, 460 44,007,499. cudapy: :kernels::cap adjust$2419..

GPU Kernels

RESULTS & DISCUSSION (PROFILING)

Running [/home/ B /nsight-systems-2022.1.1/target-1linux-x64/reports/gpumemsizesum.py Downloads/prof Ky 35 8gpus.sqlite]...
Total (MB) Avg (MB) Med (MB) Min (MB) Operation

2,540,209.342 156,100 . . : 540.180 . [CUDA memcpy DtoD]
25,400.073 11,251,871 . . : 540.180 . [CUDA memcpy DtoH]
25,389.228 55 461.622 540.180 : 540.180 192.166 [CUDA memcpy HtoD]
23,263.656 50 465.273 540.180 : 540.180 173.376 [CUDA memset]

Memory Transfer (size)

Running [/home/mmmmmm /nsight-systems-2022.1.1/target-1linux-x64/reports/gpumemtimesum.py Downloads/prof Ky 35 8gpus.sqglite]...

Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Operation

20,941,828,654 11,251,871 1,861.2 1,632.0 1,152 57,213,067 106,605.3 [CUDA memcpy DtoH]

6,693,209,423 156,100 42,877.7 1,248.0 1,023 1,396,120 202,930.2 [CUDA memcpy DtoD]

2,450,018,745 55 44,545,795.4 51,115,037.0 11,679 57,218,142 18,639,170.6 [CUDA memcpy HtoD]
26,017,855 50 520,357.1 603,691.0 82,688 605,405 192,822.3 [CUDA memset]

Memory Transfer (time)

CONCLUSIONS

* We utilize multiple GPUs for a real-world problem that directly impacts logistics operations.

 GA and 2-opt local search are utilized for large-scale CVRP.

e Tested on different hardware arrangements (1, 2, 4, and 8 GPUs) and SIMD parallel CPU
implementation.

* Execution speeds and profiling show that multiple GPUs have significant improvements over CPU or
single-GPU utilization despite the communication lags between GPUs.

 We obtained a high-quality solution compared with the best-known solution in the literature for a

problem of choice.

FUTURE WORK

This implementation is explicit to a specific communication topology and P2P support.

Future work will include improvements to execute on multi-GPU clusters with varying connection
topologies.

Utilization of shared memory and capitalization of GPU tensor cores for math operations.

10

CODE CLONING

https://github.com/MarwanAbdelattiGA VRP mGPU

README.md

GA_VRP_mGPU

An update and improvement of the GA

Code ~

VRP on multiple GPUs

About

Releases

Packages

Languages

Python

for the VRP

11

https://github.com/MarwanAbdelatti/GA_VRP_mGPU

REFERENCES

[1] Samuel Eilon, Carl Donald Tyndale Watson-Gandy, Nicos Christofides, and Richard de Neufville. 1974. Distribution management-
mathematical modelling and practical analysis. IEEE Transactions on Systems, Man, and Cybernetics 6 (1974), 589-589.

[2] Geoff Clarke and John W Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery points. Operations research 12, 4
(1964), 568-581.

[3] Michel Gendreau, Alain Hertz, and Gilbert Laporte. 1994. A tabu search heuristic for the vehicle routing problem. Management science 40, 10
(1994), 1276-1290.

[4] Jean-Yves Potvin and Jean-Marc Rousseau. 1995. An exchange heuristic for routing problems with time windows. Journal of the Operational
Research Society 46, 12 (1995), 1433-1446.

[5] Barrie M Baker and MA Ayechew. 2003. A genetic algorithm for the vehicle routing problem. Computers & Operations Research 30, 5 (2003),
787-800.

[6] Abel Garcia-Najera and John A Bullinaria. 2009. Comparison of similarity measures for the multi-objective vehicle routing problem with time
windows. In Proceedings of the 11th Annual conference on Genetic and evolutionary computation. 579-586.

[7] Christian Prins. 2004. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research 31, 12
(2004), 1985-2002.

[8] Duane Storti and Mete Yurtoglu. 2015. CUDA for engineers: an introduction to high-performance parallel computing. Addison-Wesley
Professional.

[9] Jason Sanders and Edward Kandrot. 2010. CUDA by example: an introduction to general-purpose GPU programming. Addison-Wesley
Professional.

12

QUESTIONS

	Slide 1
	Slide 4: Introduction
	Slide 5: Motivation
	Slide 6: Hardware
	Slide 9: Results & discussion (settings)
	Slide 10: Results & discussion
	Slide 11: Results & discussion (profiling)
	Slide 12: Results & discussion (profiling)
	Slide 13: conclusions
	Slide 14: Future work
	Slide 16: CODE CLONING
	Slide 17: references
	Slide 18: questions

