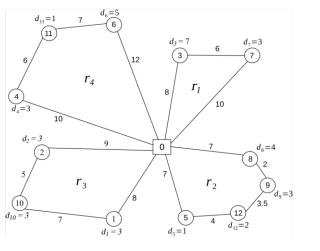


A MULTI-GPU PARALLEL GENETIC ALGORITHM FOR LARGE-SCALE VEHICLE ROUTING PROBLEMS

Marwan Abdelatti¹, Manbir S. Sodhi¹, and Resit Sendag²


¹Department of Industrial And Systems Engineering. ²Department of Electrical And Computer Engineering. University of Rhode Island mabdelrazik@uri.edu, sodhi@uri.edu, sendag@uri.edu

INTRODUCTION

- The Vehicle Routing Problem (VRP) is fundamental to logistics planning.
- It seeks the optimal set of routes for a fleet of trucks to serve a given set of customers subject to some constraints.
- There are many forms of VRP for example: Dynamic VRP (DVRP), VRP with Time Windows VRPTW, and Capacitated VRP (CVRP).
- CVRP is the most studied form of VRP where:
 - 1. Total customer demands cannot exceed the truck capacity.
 - 2. Customers must be visited only once.

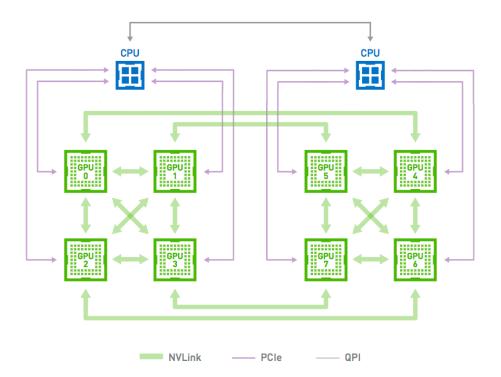
• GAs are one of the methods commonly used to solve VRP.

									-0	ene									
	8	0	6	11	4	0	8	9	12	5	0	7	3	0	1	2	10	0	114
e	^ e-co	odo	n (Chr	om		ome	e											

Special property: they operate on a population of potential solutions: Improves algorithm efficiency, and the probability of finding a good solution.

Get stuck in local minima, longer time to converge with large problems

HARDWARE



The algorithm runs entirely on a DGX-1 server:

- 8 GPUs (NVIDIA Tesla v100): each has 32 GB shared memory and 5,120 CUDA cores.
- Hybrid cube-mesh topology through NVLink.

Benefits of using NVLink and P2P:

- Direct data flow between the GPUs.
- Relieves the pressure on PCIe bus, the CPUs, and the system memory.
- Higher bandwidth and lower latency than PCIe links.

Indirect communications might cause delays!!

- The execution speed in *secs/generation* is reported on selected benchmark problems of size between 420 and 20,000 nodes.
- GA parameters are taken from a previous design of experiment (DOE):
 - Population size: $20 \times$ the number of nodes n,
 - Inverse mutation at a 0.3 probability,
 - 1-point crossover at a 0.6 probability,
 - Migration rate of *1/GPU_count* of it each GPU population,
 - Migration interval of 1,000 generations, and
 - The demes are not synchronized at the migration time to avoid further delays
- 4 GPU arrangements were considered (1, 2, 4 & 8) as well as one parallel CPU algorithm. Each arrangement run each problem 5 times for 5,000 generations.

RESULTS & DISCUSSION

Instance	Node	CPU	GPU arrangement					
Instance	Count	CIU	1	2	4	8		
X-n420-	100			0 7	0.46			
k130.vrp ^a	420	360	0.78	0.5	0.46	0.4		
Li_30.vrp ^b	1,040	1,800	18.67	9.03	4.71	1.05		
Li_31.vrp ^b	1,120	\mathbf{X}^{*}	12.18	6.11	3.18	1.22		
Li_32.vrp ^b	1,200	\mathbf{X}^*	9.92	4.89	2.67	1.80		
33.vrp ^c	2,401	\mathbf{X}^*	80.28	29.17	12.25	6.71		
34.vrp ^c	3,601	\mathbf{X}^*	253.94	145.51	54.62	21.47		
35.vrp ^c	6,001	\mathbf{X}^{*}	1,067.1	1,062.6	397.89	163.68		
Ghent1.vrp	10,000	\mathbf{X}^*	\mathbf{X}^*	\mathbf{X}^*	\mathbf{X}^{*}	1103.8		
Flanders1.vrp	20,000	\mathbf{X}^*	\mathbf{X}^*	\mathbf{X}^*	\mathbf{X}^*	2318.9		

* The problem is too big for this arrangement

• The algorithm was run for 100,000 generations on the 420-node problem and got a solution gap of 4.98% from the best-known solution in the literature.

RESULTS & DISCUSSION (PROFILING)

• Profiling was performed on a problem 6,001 nodes:

Runi	Running [/home//nsight-systems-2022.1.1/target-linux-x64/reports/cudaapisum.py Downloads/prof_Ky_35_8gpus.sqlite]								
Tir	ne (%)	Total Time (ns)	Num Calls	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	StdDev (ns)	Name
	99.0	333,792,031,463,153	134,714	2,477,782,795.1	4,605.0	2,299	39,745,047,666		cuStreamSynchronize
	0.4	1,341,112,616,325	11,251,823	119,190.7	20,027.0	16,088	423,340,776	2,373,310.5	cudaMemcpy
	0.3	857,874,468,117	229	3,746,176,716.7	352,112.0	195,902	31,071,026,971	8,689,844,668.8	cuModuleLoadDataEx
	0.2	515,423,467,827	11,948,576	43,136.8	9,324.0	3,853	23,690,688,585	8,399,554.1	cuLaunchKernel
	0.1	374,808,831,188	47	7,974,655,982.7	4,384,067,599.0	43,899,688	29,207,972,911	8,047,133,084.2	cudaMemcpyPeer

CUDA API

Runn	ing [/	home//nsight-sy	stems-2022.1	1/target-linux-x6	4/reports/gpukerns	um.py Downloads/	prof_Ky_35_8gpus	.sqlite]	
Tim	ie (%)	Total Time (ns)	Instances	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	StdDev (ns)	Name
	42.3	141,295,611,300,048							<pre>cudapy::kernels::find_duplicates</pre>
	28.5	95,280,965,906,390	4,805	19,829,545,454.0	19,740,856,891.0	15,306,774,983	29,655,096,678	2,017,849,756.1	cudapy::kernels:: two0pt \$2473(Arr
	14.3	47,767,864,922,369	4,803	9,945,422,636.3	8,856,488,169.0	2,793,094,917	16,298,794,407	3,573,339,843.0	cudapy::kernels::addMissingNodes
	12.9	43,086,587,684,137	4,809	8,959,573,234.4	8,932,402,511.0	8,377,041,422	23,896,849,953	438,697,471.9	<pre>cudapy::kernels::shift_r_flag\$24</pre>
	1.6	5,356,944,563,293	4,809	1,113,941,477.1	1,109,480,248.0	991,568,120	1,285,318,460	44,007,499.3	cudapy::kernels::cap_adjust\$2419…

GPU Kernels

RESULTS & DISCUSSION (PROFILING)

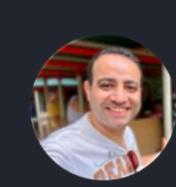
Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB) Operation
2,540,209.342 156,100 16.273 0.036 0.000 540.180 79.145 [CUDA memcpy DtoD]
25,400.073 11,251,871 0.002 0.000 0.000 540.180 1.104 [CUDA memcpy DtoH]
25,389.228 55 461.622 540.180 0.096 540.180 192.166 [CUDA memcpy HtoD]
23,263.656 50 465.273 540.180 72.012 540.180 173.376 [CUDA memset]

Memory Transfer (size)

Runr	ning [/	home/ 19 /nsigh	t-systems-20	22.1.1/target-	linux-x64/repo	rts/gpumem	timesum.py D	ownloads/prof_	Ky_35_8gpus.sqlite]
Tin	ne (%)	Total Time (ns)	Count	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	StdDev (ns)	Operation
	69.5	20,941,828,654	11,251,871	1,861.2	1,632.0	1,152	57,213,067	106,605.3	[CUDA memcpy DtoH]
	22.2	6,693,209,423	156,100	42,877.7	1,248.0	1,023	1,396,120	202,930.2	[CUDA memcpy DtoD]
	8.1	2,450,018,745	55	44,545,795.4	51,115,037.0	11,679	57,218,142	18,639,170.6	[CUDA memcpy HtoD]
	0.1	26,017,855	50	520,357.1	603,691.0	82,688	605,405	192,822.3	[CUDA memset]

Memory Transfer (time)

- We utilize multiple GPUs for a real-world problem that directly impacts logistics operations.
- GA and 2-opt local search are utilized for large-scale CVRP.
- Tested on different hardware arrangements (1, 2, 4, and 8 GPUs) and SIMD parallel CPU implementation.
- Execution speeds and profiling show that multiple GPUs have significant improvements over CPU or single-GPU utilization despite the communication lags between GPUs.
- We obtained a high-quality solution compared with the best-known solution in the literature for a problem of choice.



- This implementation is explicit to a specific communication topology and P2P support.
- Future work will include improvements to execute on multi-GPU clusters with varying connection topologies.
- Utilization of shared memory and capitalization of GPU tensor cores for math operations.

CODE CLONING

https://github.com/MarwanAbdelatti/GA_VRP_mGPU

알 main → 알 1 branch □	○ 0 tags	Go to file Add file - Code -	About					
📵 MarwanAbdelatti Correcti	ed readme file	839c127 18 seconds ago 🚯 23 commits	A version of the GA algorithm for the VF running on multiple GPUs					
pycache								
journal-set								
results								
test_set								
README.md			Releases					
🗅 дри.ру								
🗋 gpuGrid.py								
kernels.py			Bashama					
🗅 mgpu-1.py			Packages					
🗋 mgpu-2.py								
🗅 mgpu-4.py								
🗅 mgpu.py			Languages					
🗋 mgpu_test.sh			 Python 99.7% Shell 0.3% 					
pycuda_env.yml								
🗅 val.py								
🗅 vrp.sh								
README.md								
GA_VRP_m	GPU							
An update and improvem	ent of the GA for VRP on multiple GPUs.							
	ns the algorithm on a non-job scheduling platform u 1,000 generations, 0 optimal value (to get the lowes d a mutation rate of 30%:							

REFERENCES

[1] Samuel Eilon, Carl Donald Tyndale Watson-Gandy, Nicos Christofides, and Richard de Neufville. 1974. Distribution managementmathematical modelling and practical analysis. *IEEE Transactions on Systems, Man, and Cybernetics* 6 (1974), 589–589.

[2] Geoff Clarke and John W Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery points. *Operations research* 12, 4 (1964), 568–581.

[3] Michel Gendreau, Alain Hertz, and Gilbert Laporte. 1994. A tabu search heuristic for the vehicle routing problem. *Management science* 40, 10 (1994), 1276–1290.

[4] Jean-Yves Potvin and Jean-Marc Rousseau. 1995. An exchange heuristic for routing problems with time windows. *Journal of the Operational Research Society* 46, 12 (1995), 1433–1446.

[5] Barrie M Baker and MA Ayechew. 2003. A genetic algorithm for the vehicle routing problem. *Computers & Operations Research* 30, 5 (2003), 787–800.

[6] Abel Garcia-Najera and John A Bullinaria. 2009. Comparison of similarity measures for the multi-objective vehicle routing problem with time windows. *In Proceedings of the 11th Annual conference on Genetic and evolutionary computation*. 579–586.

[7] Christian Prins. 2004. A simple and effective evolutionary algorithm for the vehicle routing problem. *Computers & Operations Research* 31, 12 (2004), 1985–2002.

[8] Duane Storti and Mete Yurtoglu. 2015. CUDA for engineers: an introduction to high-performance parallel computing. Addison-Wesley Professional.

[9] Jason Sanders and Edward Kandrot. 2010. CUDA by example: an introduction to general-purpose GPU programming. Addison-Wesley Professional.

QUESTIONS

